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Abstract 

Background:  Forecasting new cases, hospitalizations, and disease-induced deaths is an important part of infectious 
disease surveillance and helps guide health officials in implementing effective countermeasures. For disease surveil‑
lance in the US, the Centers for Disease Control and Prevention (CDC) combine more than 65 individual forecasts 
of these numbers in an ensemble forecast at national and state levels. A similar initiative has been launched by the 
European CDC (ECDC) in the second half of 2021.

Methods:  We collected data on CDC and ECDC ensemble forecasts of COVID-19 fatalities, and we compare them 
with easily interpretable “Euler” forecasts serving as a model-free benchmark that is only based on the local rate 
of change of the incidence curve. The term “Euler method” is motivated by the eponymous numerical integration 
scheme that calculates the value of a function at a future time step based on the current rate of change.

Results:  Our results show that simple and easily interpretable “Euler” forecasts can compete favorably with both CDC 
and ECDC ensemble forecasts on short-term forecasting horizons of 1 week. However, ensemble forecasts better 
perform on longer forecasting horizons.

Conclusions:  Using the current rate of change in incidences as estimates of future incidence changes is useful 
for epidemic forecasting on short time horizons. An advantage of the proposed method over other forecasting 
approaches is that it can be implemented with a very limited amount of work and without relying on additional data 
(e.g., data on human mobility and contact patterns) and high-performance computing systems.
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Background
Over the course of the COVID-19 pandemic more than 
65 international research groups contributed to an 
ensemble forecast of reported COVID-19 cases, hospital-
izations, and fatalities in the US [1]. These forecasts are a 
central source of information on the further development 
of the pandemic and used by various governmental and 
non-governmental entities including the Centers for Dis-
ease Control and Prevention (CDC) [2]. A similar initia-
tive has been launched in by the European CDC (ECDC) 
in the second half of 2021 [3].

Different forecasting methods [4, 5] rely on different 
underlying models and assumptions. One may roughly 
divide forecasting models into three different classes: (i) 
mechanistic models [6, 7], (ii) purely data-driven models 
[8], and (iii) hybrid models. Most classical epidemic mod-
els are mechanistic and aim at describing disease dynam-
ics in terms of interacting individuals in a population. 
Such models are usually applied to describe the influence 
of certain factors (e.g., population density, demograph-
ics, contact patterns, mobility, etc.) on the dynamics of 
an epidemic. Data-driven and machine learning models 
make fewer assumptions about the underlying dynamics 
and are applicable to a broader range of forecasting prob-
lems, but they also come at the cost of less interpretabil-
ity for policymakers and epidemiologists.

Open Access

*Correspondence:  anino@ethz.ch
1 Computational Social Science, ETH Zurich, 8092 Zurich, Switzerland
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4337-2475
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-022-07205-9&domain=pdf


Page 2 of 7Antulov‑Fantulin and Böttcher ﻿BMC Infectious Diseases          (2022) 22:251 

Here, we show that a very basic, model-free forecast-
ing approach provides effective short-term forecasts of 
COVID-19 fatalities. We refer to this method as “Euler 
forecast” because of its mathematical connection to the 
Euler method [9, 10] that is used in computational math-
ematics to calculate the value of a function at a future 
time step based on the current rate of change.

Methods
Different epidemiological models [12] capture different 
aspects of disease spread and many of these models are 
based on coupled ordinary differential equations (ODEs). 
In the susceptible-infected-recovered (SIR) model [6], 
the rate of change of S(t), the number of susceptible indi-
viduals at time t, is described by the ODE

Here, I(t) and N denote the number of infectious individ-
uals at time t and the population size, respectively. The 
infection rate is β.

We now assume that the epidemic state of a population 
can be represented by some quantity y(t) and that its evo-
lution (i.e., the rate of change) is described by a function 
g(y(t), t). That is,

The SIR model (1) can be written in terms of Eq.  (2) by 
setting y(t) = (S(t), I(t),R(t))⊤.

Euler’s method [9] is one of the simplest numerical pro-
cedures for solving ordinary differential equations of the 
form (2) for a given initial condition. This method uses a 
timestep �t > 0 to approximate the solution of Eq. (2) at 
times t1, t2, . . . , tn according to9, 10

However, in reality the functional form g(·) that describes 
the rate of change of y(t) that is relevant for infectious 
disease surveillance is usually not known. In the follow-
ing paragraphs, we thus describe practical ways how to 
estimate COVID-19 fatalities y(t) and their local rate of 
change ẏ(t) from noisy observation data.

We first collected data on CDC ensemble forecasts 
between June 2020 and June 2021 [1].1 Ensemble fore-
casts are available for cumulative and weekly incidence 
and fatality numbers and a forecasting horizon between 
1 to 4 weeks. All forecasts use data from the Johns Hop-
kins Coronavirus Resource Center [11] as ground truth. 
Forecasts are made for epidemiological weeks which run 

(1)Ṡ(t) = −βS(t)I(t)/N .

(2)ẏ(t) = g(y(t), t).

(3)y(tn+1) = y(tn)+�tẏ(tn).

Sunday through Saturday. As an example, if forecasts 
with 1- and 4-week forecasting horizons are being made 
on June 8, 2020 the corresponding forecasting intervals 
are June 7–June 13, 2020 and June 7–July 4, 2020 [13].

We compare CDC and ECDC ensemble forecasts of 
COVID-19 fatalities with a simple and easily interpreta-
ble forecasting method. To do so, let y(t) be the incidence 
of COVID-19 fatalities at time t. We use ẏ(t) to denote 
the rate of change of y(t) at time t. Forecasting the inci-
dence y(t +�t) at a target time t +�t requires us to 
find an estimate of this quantity at an earlier time t. A 
straightforward way to construct short-term forecasts is 
to (i) use the current rate of change ẏ(t) and (ii) deter-
mine a forecast at time tk = t0 + k�t according to the 
Euler method [9, 10]

where �t and k = 1, 2, . . . represent a time step (e.g., 1 
week) and the number of time steps in the forecasting 
horizon, respectively. However, observed incidences are 
subject to observation noise that results from confound-
ing factors including sampling bias, measurement errors, 
and reporting delays [14].

A possible way to “de-noise” observed data is to use 
weekly incidences instead of daily incidence levels. If 
observational noise can be reduced by averaging over a 
period of several days, daily errors are less pronounced 
on a weekly level. However, the local daily derivative is 
quite sensitive to noise and our incidence correction term 
may not help in making accurate short-term forecasts. 
Therefore, we can impose some degree of regularity to 
reduce the level of noise with the following minimization

where yk = y(t0 + k�t) , wk = w(t0 + k�t) is a regu-
larized approximation of yk , and � is a regularization 
parameter. In the limit � → 0 , the argument of Eq. (5) is 
minimized if w(t) approaches y(t). In the limit � → ∞ , 
the argument of Eq.  (5) is minimized if w(t) is constant 
(i.e., if wk − wk−1 = 0 ). This optimization process has 
its equivalent Euler–Lagrange formulation for numeri-
cal  differentiation [15, 16]. Values of � ∈ (0,∞) yield 
functions w(t) that are smoothed versions of y(t) with 
respect to the discrete rate of change wk − wk−1 . Finally, 
the regularized Euler short-term forecast2 is given by

(4)
y(t0 + k�t) = y(t0)

︸︷︷︸

last incidence

+ k�t ẏ(t0)
︸ ︷︷ ︸

incidence correction

,

(5)

arg min {wk }

∑

k

(yk − wk)
2 + �

∑

k

(wk − wk−1)
2,

1  Additional results for CDC and ECDC forecasts that are based on data that 
was last updated in January 2022 are provided in the Results section.

2  All optimization procedures in this work were robust to regularization 
parameter selection and were applied in a causal manner. That is, at the pre-
diction time T only historical data y(t ≤ T ) is being used in the minimization 
(5).
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In the following section, we use both the standard Euler 
method and the  regularized Euler method to generate 
forecasts of reported COVID-19 fatalities.

Our source codes are publicly available at [17].

Results
Figure 1 shows CDC ensemble forecasts (solid blue lines) 
of the weekly incidences of reported COVID-19 fatalities 
from June 2020 until June 2021. The dashed black lines 
indicate reported COVID-19 fatalities. Between June and 
early November 2020, the majority of reported fatali-
ties were close to the ensemble forecast. As COVID-19 
deaths surged in November 2020, the forecasts of the 
ensemble method became less accurate than in previous 
months.

For a comparison between the CDC ensemble point 
estimates and those obtained with the regularized Euler 
method [Eq. (6)], Fig. 1 also shows regularized Euler fore-
casts (solid red lines) of weekly incidences of COVID-19 

(6)y(t + k�t) = y(t)+ k [w(t)− w(t −�t)]. fatalities in the US. We observe that 1-week CDC ensem-
ble forecast for the majority of data points are not more 
accurate than 1-week Euler forecasts (Fig. 1a), which we 
use as a local-derivative-based forecasting benchmark. 
Although Euler and CDC forecasts still exhibit a similar 
structure for a 4-week forecasting horizon (Fig. 1b), the 
Euler method is associated with larger deviations from 
the reported fatalities than the CDC ensemble method. 
To quantify differences in forecasting errors between the 
two methods, we use

to denote the absolute error between the Euler or CDC 
forecast y(t) and the ground truth x(t) at time t.

Figure  1c, d show the 4-week moving averages of 
weekly forecasting errors δ(t) (solid lines) of the Euler 
method  (red) and the  CDC ensemble (blue) method. 
As suggested by our above discussion of Fig.  1a, we 
observe that the error of the Euler method is substan-
tially smaller than that of the ensemble forecast for a 
1-week forecasting horizon. In about 61% of the fore-
casting instances shown in Fig. 1a, the regularized Euler 
method has a smaller error than the CDC ensemble 
forecast. The cumulative forecasting errors are 49,925 
(Euler) and 52,885 (CDC). Without correction term 

(7)δx,y(t) = |x(t)− y(t)|

Fig. 1  Comparison of predicted and reported weekly COVID-19 deaths in the US (data updated in June 2021). a, b Forecasts of reported weekly 
COVID-19 deaths in the US for a 1-week and b 4-week forecasting horizons. Blue and red lines represent CDC ensemble forecasts [1] and regularized 
Euler forecasts [Eq. (3)] with � = 10 , respectively. Reported COVID-19 fatalities (dashed black lines) are based on [11]. c, d 4-week moving averages 
of weekly forecasting errors of Euler–Lagrange and CDC ensemble forecasts. Solid lines indicate 4-week moving averages that are calculated based 
on the shown data points
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k [w(t)− w(t −�t)] in Eq.  (6), the cumulative forecast-
ing error of the Euler method is 52,660, again smaller 
than that of CDC ensemble forecast. Note that fore-
casts without correction correspond to a simple shift of 
the incidence curve [see Eq.  (4)]. For a 4-week forecast-
ing horizon (Fig.  1d), the cumulative error of the CDC 
ensemble forecast is 87,717, about 35% smaller than that 
of the Euler method.

To complement our analysis of CDC ensemble fore-
casts from June 2020 until June 2021, we have updated 
the CDC ensemble forecast data in January 2022. We 
conduct a separate analysis because historical ensemble 
forecasts can be changed a posteriori [18]. In addition, we 
have also gathered ECDC forecasts from May 2021 until 
January 2022 [3] for EU and EFTA countries and the UK.

Based on the second set of CDC ensemble forecasts, 
we observe that the accuracy of 1-week ensemble fore-
cast (Fig.  2a, b) improved slightly with respect to the 
regularized Euler forecast. The cumulative for ecast-
ing errors until January 2022 are 93,645 (Euler regu-
larized) and 84,870 (CDC). Without correction term 
k [w(t)− w(t −�t)] in Eq.  (6), the cumulative forecast-
ing error of the Euler method is 94,108. For a 1-week 
forecasting horizon, the Euler method is associated with 
larger deviations from the reported fatalities than the 
CDC ensemble method i n about 51% of the forecasting 
instances shown in Fig. 2. On a longer forecasting horizo 

n of 4 weeks, the Euler method performs better than the 
CDC ensemble method in only 16% of all cases. This 
result is not surprising because the Euler method relies 
on smoothed curve shift and is not designed for longer 
forecasting horizons. For the comparison with ECDC 
[3] ensemble forecasts, we use all data that was available 
in January 2022 to compare the forecasting errors with 
those of Euler forecasts (Fig. 3a, b). The cumulative fore-
casting errors until January 2022 are 28,769 (Euler regu-
larized) and 30,942 (ECDC). Without correction term 
k [w(t)− w(t −�t)] in Eq.  (6), the cumulative forecast-
ing error of the Euler method is 30,353. In about 36% of 
the forecasting instances shown in Fig.  3a, the regular-
ized Euler method has a s maller error than the ECDC 
ensemble forecast. Finally, in Appendix Figs.  4 and 5 
we show joint comparisons of errors of Euler, regular-
ized Euler, and (E)CDC forecasts.

Discussion
On 1-week forecasting horizons, regularized Euler fore-
casts have smaller errors with respect to CDC ensemble 
forecasts in about 61% of all cases up to June 2021 and in 
about 49% of all cases up to January 2022. The cumula-
tive errors are worse for CDC up to June 2021 and better 
if we consider data up to January 2022. In comparison 
with ECDC forecasts, the regularized Euler method per-
forms better in 36% of the forecasting instances on a 

Fig. 2  Comparison of predicted and reported weekly COVID-19 deaths in the US (data updated in January 2022). a Forecasts of reported weekly 
COVID-19 deaths in the US for 1-week forecasting horizons. Blue and red lines represent CDC ensemble forecasts [1] and regularized Euler forecasts 
[Eq. (6)] with � = 10

5 , respectively. Reported COVID-19 fatalities (dashed black lines) are based on [11]. b 1-week moving averages of weekly 
forecasting errors of Euler–Lagrange and CDC ensemble forecasts. Solid lines indicate 1-week moving averages that are calculated based on the 
shown data points



Page 5 of 7Antulov‑Fantulin and Böttcher ﻿BMC Infectious Diseases          (2022) 22:251 	

1-week forecasting horizon, while ECDC forecasts are 
associated with a lower cumulative error up to January 
2022. Overall, on a 1-week forecasting horizon  sim-
ple Euler forecasts can perform similarly to ensemble 
methods that are composed of a large number of more 
complex models. In agreement with [19], our results 
emphasize the importance of benchmarking complex 
forecasting models against simple forecasting baselines 
to further improve forecasting accuracy. Similar conclu-
sions were drawn in a recent study [19] that compared 
Euler-like forecasts with those generated by Google Flu 
Trends. Our study also points towards recent findings 
on algorithm rejection and aversion [20] that found that 
“people have diminishing sensitivity to forecasting error” 
and that “people are less likely to use the best possible 
algorithm in decision domains that are more unpredict-
able”. Finally, in highly uncertain and noisy forecasting 
regimes, simple methods tend to outperform more com-
plex methods because of a more favorable bias-variance 
trade-off [21].

Conclusions
Our results suggest that easily interpretable methods like 
the Euler method, a model-free local-derivative-based 
forecasting benchmark, provide an effective alternative to 
more complex epidemic forecasting frameworks on short-
term forecasting horizons. Simple curve shifts without 
regularization provide forecasts that are close to CDC and 
ECDC ensemble forecast, a finding that can help improve 
existing forecasting methods. For longer forecasting hori-
zons, it is not surprising that CDC and ECDC forecasts 
that rely on additional input data and epidemiological 
and statistical models become more accurate than Euler-
like forecasting benchmarks. One clear advantage of 
Euler forecasting methods is that they are less labor and 
resource intensive than more complex forecasting mod-
els, which often rely on the knowledge of expert groups 
and require specialized computing infrastructure. In their 
simplest implementation, Euler forecasts use the currently 
observed incidence rate as an estimate of the incidence 
rate in the following week. Regularization methods (6) 
can help further improve such data-driven forecasts.

Fig. 3  Comparison of predicted and reported weekly COVID-19 deaths in EU and EFTA countries and the UK (data updated January 2022). a 
Forecasts of reported weekly COVID-19 deaths in EU and EFTA countries and the UK for 1-week forecasting horizons. Blue and red lines represent 
ECDC ensemble forecasts [3] and regularized Euler forecasts [Eq. (6)] with � = 10

4 , respectively. Reported COVID-19 fatalities (dashed black lines) are 
based on [11]. b 1-week moving averages of weekly forecasting errors of Euler–Lagrange and ECDC ensemble forecasts. Solid lines indicate 1-week 
moving averages that are calculated based on the shown data points



Page 6 of 7Antulov‑Fantulin and Böttcher ﻿BMC Infectious Diseases          (2022) 22:251 

Appendix
See Figs. 4 and 5.
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Fig. 4  Forecasting errors of Euler, regularized Euler, and CDC ensemble forecasts (data updated in January 2022)
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Fig. 5  Forecasting errors of Euler, regularized Euler, and ECDC ensemble forecasts (data updated in January 2022)
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